
R E S E A R CH A R T I C L E

Gray matter volume and estimated brain age gap
are not linked with sleep-disordered breathing

Bahram Mohajer1,2 | Nooshin Abbasi3 | Esmaeil Mohammadi1,2 |

Habibolah Khazaie4 | Ricardo S. Osorio5,6 | Ivana Rosenzweig7,8 |

Claudia R. Eickhoff9,10 | Mojtaba Zarei1 | Masoud Tahmasian1 |

Simon B. Eickhoff9,11 | for the Alzheimer's Disease Neuroimaging Initiative

1Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran

2Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

3McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

4Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

5Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, New York

6Nathan S. Kline Institute for Psychiatric Research, New York, New York

7Sleep Disorders Centre, Guy's and St Thomas' Hospital, GSTT NHS, London, UK

8Sleep and Brain Plasticity Centre, Department of Neuroimaging, IOPPN, King's College London, London, UK

9Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany

10Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany

11Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany

Correspondence

Masoud Tahmasian, Institute of Medical

Science and Technology, Shahid Beheshti

University, Daneshjou Boulevard, Velenjak,

P.O. Box 1983969411, Tehran, Iran.

Email: m_tahmasian@sbu.ac.ir

Funding information

NIH/NIA'a, Grant/Award Numbers:

R21AG055002, R01AG056531,

R01AG056031; European Union's Horizon

2020 Research and Innovation Programme,

Grant/Award Number: 7202070; Helmholtz

Portfolio Theme; National Institute of Mental

Health; Deutsche Forschungsgemeinschaft;

University of Southern California; Northern

California Institute for Research and Education;

Foundation for the National Institutes of

Health; Canadian Institutes of Health

Research; Transition Therapeutics; Takeda

Pharmaceutical Company; Servier; Piramal

Imaging; Pfizer Inc; Novartis Pharmaceuticals

Corporation; Neurotrack Technologies;

Abstract

Alzheimer's disease (AD) and sleep-disordered breathing (SDB) are prevalent

conditions with a rising burden. It is suggested that SDB may contribute to cognitive

decline and advanced aging. Here, we assessed the link between self-reported SDB

and gray matter volume in patients with AD, mild cognitive impairment (MCI) and

healthy controls (HCs). We further investigated whether SDB was associated with

advanced brain aging. We included a total of 330 participants, divided based on self-

reported history of SDB, and matched across diagnoses for age, sex and presence of

the Apolipoprotein E4 allele, from the Alzheimer's Disease Neuroimaging Initiative

(ADNI). Gray-matter volume was measured using voxel-wise morphometry and group

differences in terms of SDB, cognitive status, and their interaction were assessed.

Further, using an age-prediction model fitted on gray-matter data of external

datasets, we predicted study participants' age from their structural images. Cognitive

decline and advanced age were associated with lower gray matter volume in various

regions, particularly in the bilateral temporal lobes. Brains age was well predicted
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from the morphological data in HCs and, as expected, elevated in MCI and particu-

larly in AD subjects. However, there was neither a significant difference between

regional gray matter volume in any diagnostic group related to the SDB status, nor in

SDB-by-cognitive status interaction. Moreover, we found no difference in estimated

chronological age gap related to SDB, or by-cognitive status interaction. Contrary to

our hypothesis, we were not able to find a general or a diagnostic-dependent associa-

tion of SDB with either gray-matter volumetric or brain aging.
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1 | INTRODUCTION

Dementia syndromes including Alzheimer's disease (AD), are major

global concerns, with a prevalence of 712 cases per 100,000 popula-

tion in 2016, affecting 40–50 million people worldwide (Nichols et al.,

2019). Considering that the number of AD patients has been more

than doubled during the past three decades (Nichols et al., 2019), it is

critical to unravel the predisposing risk factors (Xu et al., 2015). These

include advanced aging of the world population, but also modifiable

risk factors (Xu et al., 2015) such as diabetes (Vagelatos & Eslick,

2013), obesity (Alford, Patel, Perakakis, & Mantzoros, 2018), and

sleep-disordered breathing (SDB) (Emamian et al., 2016) Sleep-

disordered breathing ranges from partial (episodical) to complete air-

way obstruction leading to intermittent hypoxia, sleep fragmentation

and intrathoracic pressure swings (Adult Obstructive Sleep Apnea

Task Force of the American Academy of Sleep Medicine et al., 2009).

A bidirectional relationship has been proposed between SDB, includ-

ing its most common form (i.e., obstructive sleep apnea [OSA]), and

AD. In particular, it has been suggested that patients with OSA are

more likely to develop mild cognitive impairment (MCI) or dementia

(Osorio et al., 2015; Yaffe et al., 2011). Moreover, our meta-analysis

demonstrated that the prevalence of OSA is five times higher in

patients with AD than cognitively unimpaired individuals of the same

age (Emamian et al., 2016).

Gray matter atrophy is a key feature of pathologic brain aging

(Karas et al., 2004) and a common finding in the AD studies, starting

primarily in the medial temporal region and then globally affecting the

brain along the trajectory of disease (Fox & Schott, 2004; C. R. Jack

et al., 2004; Pasquini et al., 2019). Morphometric analysis of the struc-

tural MRI images has shown to reliably reveal this effect (Good et al.,

2001). While some studies have shown gray matter atrophy in brain

regions like the hippocampus, a key region involved in AD, to be associ-

ated with SDB in non-demented subjects (Joo et al., 2010; Joo, Jeon,

Kim, Lee, & Hong, 2013; Morrell et al., 2010; Torelli et al., 2011; Weng

et al., 2014), others have shown either null results (O'Donoghue et al.,

2005; Yun et al., 2017) or paradoxical hypertrophy or thickening of gray

matter in SDB (Baril et al., 2017; Kumar et al., 2014; Lin et al., 2016;

Lundblad et al., 2014; Rosenzweig et al., 2013; Taylor et al., 2018) Dis-

crepancy between these findings is attributed to variations in cognitive

status of participants, definitions of SDB severity, and method of gray

matter volume assessment (Baril et al., 2017; Sebastien Celle et al.,

2016; Fatouleh et al., 2014; Joo et al., 2013; Kumar et al., 2014; Lin

et al., 2016; Lundblad et al., 2014; Rosenzweig et al., 2013; Torelli

et al., 2011). Thus, the contributing role of SDB in AD pathophysiology

is still an open question.

Aside from regional atrophy in the medial temporal lobe, AD is

associated with advanced multivariate patterns of brain aging. In par-

ticular, it has been demonstrated that individual subjects' age can be

predicted from gray matter morphometry in the cognitively normal

population using machine-learning approaches (Varikuti et al., 2018).

That is, models trained to predict individuals ages based on larger

cohorts of reference images allow to estimate the age of a new per-

son with a mean accuracy of 4–5 years (Franke, Luders, May,

Wilke, & Gaser, 2012), while studies on neurodegenerative disorders

showed a pattern of advanced aging, that is, a positive BrainAGE

score (difference between the age predicted, based on the morpho-

metric pattern, and chronological age) (Cole, Marioni, Harris, &

Deary, 2019; Gaser et al., 2013; Löwe, Gaser, Franke, & Alzheimer's

Disease Neuroimaging Initiative, 2016; Varikuti et al., 2018).

Although it has been demonstrated that SDB was linked with an

earlier age at cognitive decline and treatment of SDB postpones pro-

gression of cognitive impairment (Osorio et al., 2015), it remains

unclear, whether and how SDB is associated with accelerated brain

age and potential brain atrophy in AD.

The aim of the current study is to shed further light on the poten-

tial relationship between SDB and AD in terms of brain atrophy

patterns at the regional and global levels, answering two questions.

(a) Do patients with SDB show gray matter atrophy across or in inter-

action with cognitive status (healthy controls (HCs), MCI, and AD)?

(b) Do patients with SDB show advanced brain aging across or in

interaction with cognitive status? To this end, we used data from the

Alzheimer's Disease Neuroimaging Initiative (ADNI), and established

the validity of our methods by replicating previous findings for both

aims in MCI and AD, and then assessed gray matter volume and
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BrainAGE differences between those patients with SDB compared to

their counterparts, including interactions with cognitive status.

2 | MATERIAL AND METHODS

2.1 | Participants

Subjects were drawn from the ADNI database (adni.loni.usc.edu)

(Petersen et al., 2010) based on their cognitive status and the medical

history regarding SDB, as suggested previously (Osorio et al., 2015).

Diagnoses of MCI and AD were based on the ADNI criteria. Subjects

with self-reported “sleep apnea” or “obstructive sleep apnea”

(or “OSA”) symptoms or receiving treatment with “Continuous Posi-

tive Airway Pressure” (or “CPAP”) or “bilevel positive airway pressure”

(or “BiPAP”/“BPAP”) were defined as “positive SDB.” Two indepen-

dent physicians reviewed medical history to confirm diagnosis and

grouping the subjects. Demographic and clinical variables were

extracted for all individuals, missing covariate data were assessed and

multiple imputation method including variables of sex, age, cognitive

status, body-mass index (BMI), and education years (Zhang, 2016) was

used for five participants with missing data-points on BMI (three sub-

jects), and education years (two subjects). Using the 1:1 propensity

score matching method, we assembled six distinct sub-groups

according to their cognitive (HC, MCI, AD) and SDB (positive or nega-

tive) status. Covariates included in the matching were age, sex, years

of education, BMI, cognitive status (HC, MCI, AD), presence of the

Apolipoprotein E4 (APOE4) allele, history of SDB treatment (only

when matching between those with SDB subjects), T1 imaging pro-

tocol, and field strength (Table 1). To efficiently match the study

diagnosis groups for age, we have included both baseline and

follow-up ADNI images in the propensity-score matching model.

Only subjects that passed the quality assessment of the CAT

(Computational Anatomy Toolbox), including weighted image qual-

ity rating based on the basic image properties, noise and geometric

distortions, as well as checking homogeneity through the sample,

were included for our analyses.

2.2 | Imaging acquisition and preprocessing

Participants had undergone a standardized protocol for high-

resolution MRI T1 scans of the brain as previously described (Clifford

R. Jack et al., 2008). T1 imaging acquisition parameters were:

TR = 2,400 ms, minimum full TE, TI = 1,000 ms, flip angle = 8�, 24 cm

field of view, acquisition matrix of 192 × 192 × 166 and with

1.25 × 1.25 × 1.2 mm3 slice size. We used CAT12 (Computational

Anatomy Toolbox) (Gaser & Dahnke, 2016) and SPM12 (Statistical

Parametric Mapping,www.fil.ac.uk/spm) to perform voxel-based mor-

phometry (VBM). This included correcting the bias-field distortions

and noise removal, skull stripping, normalization to standard space

and brain tissue segmentation into gray matter, white matter, and

cerebrospinal fluid. Gray matter segments were modulated to

represent actual gray matter volume. We then performed a biologi-

cally informed compression of the VBM data to the 673 gray matter

parcels based existing in-vivo brain parcellation (600 cortical gray-

matter parcels from Schäfer, 36 subcortical gray-matter parcels from

Brainnetome, and 37 cerebellar parcels from Buckner (Fan et al.,

2016; Schaefer et al., 2018; Yeo et al., 2011). Thus, gray matter vol-

ume of each participant was represented by 673 features, each rep-

resenting an individual parcel volume of that subject. The following

analyses were performed on this data.

2.3 | Statistical analysis of gray matter volume

Statistical analysis of gray matter volume of 673 parcels included

three consecutive parts, suggested by Bludau and colleagues (Bludau

et al., 2018); generating reference statistics, permuted statistics, and a

family-wise error (FWE) correction for multiple comparisons. Here we

used an n-way analysis of variance (ANOVA), to test the effect of age,

cognitive status (HC, MCI, AD), SDB status, and SDB-by-cognitive sta-

tus interaction, separately as independent variables (factors), on gray

matter volume of each parcel as the dependent variable. The F values

(per parcel) of this ANOVA were considered as the reference statis-

tics. In the subsequent permutation statistics for each factor, we ran-

domly shuffled the labels for that factor 10,000 times, replicated the

TABLE 1 Characteristics of the study subjects

Without

sleep-
disordered
breathing

With sleep-
disordered
breathing p-Value

N: 165 N: 165

Age (mean [SD]) 73.99 (7.70) 74.91 (7.18) .26

Age range 56.1–91.9 58.1–91.2 —

Sex, female (%) 61 (37.0) 48 (29.1) .16

Cognitive status (%) 1.00

Alzheimer's disease 24 (14.5) 24 (14.5)

Mild cognitive impairment 111 (67.3) 111 (67.3)

Healthy control 30 (18.2) 30 (18.2)

Body-mass index (mean [SD]) 28.97 (5.95) 29.08 (5.45) .86

Education years (mean [SD]) 16.07 (2.75) 16.16 (2.65) .74

Handedness, left (%) 18 (10.9) 18 (10.9) 1.00

APOE4 allele count (%) .13

0 71 (46.7) 94 (58.0)

1 64 (42.1) 53 (32.7)

2 17 (11.2) 15 (9.3)

MMSE (mean [SD])a 26.07 (4.13) 25.44 (4.93) .25

CPAP/BiPAP/surgery (%)a 0 (0.0) 56 (33.9) —

Protocol, MP-RAGE (%) 118 (71.5) 124 (75.2) .53

Abbreviations: BiPAP, bilevel positive airway pressure; CPAP, continuous

positive airway pressure; MMSE, mini-mental state examination; MP-

RAGE, 3D magnetization prepared rapid gradient echo.
aNot included in the matching.
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analysis and recorded the F values to build a null-distribution. The

comparison of the reference statistic with this distribution then allows

nonparametric inference per parcel and factor, yielding uncorrected p-

values. Importantly, however, we also recorded, per replication of the

permutation, the highest statistics in the random data across the

entire set (i.e., 673 brain regions), building a null-distribution for FWE

correction. The threshold corresponding to PFWE < .05 was then pro-

vided by the (set-wise maximum) value exceeded only in 5% of the

replications.

2.4 | Age prediction

Brain age was estimated from the atlas-based representations of indi-

vidual brain anatomy using a support vector machine (SVM) ensemble

model. An independent (reference) large dataset consisting of 2089

(Figure 1a1) subjects (between 55 and 85 years old) was compiled

from several large public and private datasets including 1000Brains

(Caspers et al., 2014), Cambridge Centre for Aging and Neuroscience

or Cam-CAN (Shafto et al., 2014), OpenfMRI (Poldrack et al., 2013),

Dallas Lifespan Brain Study or DLBS, Consortium for Reliability and

Reproducibility or CoRR (Zuo et al., 2014), IXI, and Enhanced Nathan

Kline Institute-Rockland Sample or eNKI-RS (Nooner et al., 2012).

Given the imbalance between age brackets, sites, and sex, we per-

formed a stratified subsampling, choosing the same number of men

and women, as well as similar numbers across age-brackets and a

maximum of 30 subjects per age-bracket and sex per site. The actual

subjects sampled in each replication from the overall database were

drawn from the pool independently at random without replacement.

Each of these sampled sets was then used to fit an individual SVM

providing a weak learner for the ensemble which was applied to the

test data, that is, the ADNI sample. The process was repeated 10,000

times, yielding 10,000 age predictions based on models trained

on (different) balanced subsamples of the multi-cohort reference

F IGURE 1 Main processing steps for parcel-based volumetric study and age prediction based on gray matter morphometry. (a1) T1 brain
images of 2089 non-demented age, sex, and site stratified subjects were acquired through several imaging databases for the development of the
age-prediction model (training images). To obtain voxel-based gray matter volume data, standard pre-processing steps including normalization,

segmentation, and modulation for nonlinear transformations have been done using Computational Anatomical Toolbox 12 (CAT12). A biologically
informed compression of the voxel-wise gray matter volume data to 600 cortical and 73 subcortical regions was applied accordingly. (b1) Parcel-
based representations of individual neuroanatomy were then used as input for training the support vector machine (SVM) used for the age-
prediction model. (a2) Similar pre-processing steps were done on T1 brain images of study-specific participants with and without sleep-disordered
breathing (study-specific images). Parcel-based results were used in two parallel analyses; (1) (b2) inputted to partial ANOVA tests for gray matter
volume assessment according to the presence of sleep-disordered breathing and cognitive status as contrasts and (2) (b3) inputted in the age
prediction SVM model developed on the training images. ANOVA, analysis of variance
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data. These predictions were then averaged (“bagging”) to yield

the final age prediction based on the 673-parcel representation

of the voxel-based morphometry data (Becker, Mahlke, Reckert,

Eickhoff, & Ritz-Timme, 2019). Each subject's BrainAGE score was

finally calculated as bagged predicted age minus chronological age

for each subject (Figure 1).

2.5 | Data availability

The original data used in this manuscript are publicly available in the

online address of the ADNI database at http://adni.loni.usc.edu/data-

samples/access-data/.

3 | RESULTS

Each group with SDB and without SDB were comprised of 24 AD,

111 MCI, and 30 HC participants. There was no statistically significant

difference in demographic variables, cognitive status, and presence of

the APOE4 allele between SDB groups. Table 1 summarizes the char-

acteristics of all study groups.

3.1 | Effects on gray matter volume

There were strong (PFWE < .001) and widespread negative associa-

tions of regional gray matter volume with “age,” in particular in the

bilateral temporal lobes, bilateral prefrontal, middle and superior

frontal areas, bilateral medial and lateral occipital areas, cerebellum

and thalamus, caudate and putamen in the subcortical gray matter

(Figure 2a). The “cognitive status” was significantly associated with

reduced gray matter volume in many bilateral parcels with dominancy

in the left hemisphere (PFWE < .001). Bilateral temporal lobes including

fusiform gyri, medial temporal lobes, and hippocampal formations, and

inferior and middle temporal lobes, as well as bilateral insula, middle

frontal, and cingulate cortices, as well as left superior frontal cortex

had significantly lower volume in participants with MCI and particu-

larly AD (Figure 2b). In turn, when testing for effects of SDB status

and SDB-by-cognitive status interaction, we found no significant

region anywhere in the brain (all PFWE > .05).

3.2 | Effects on estimated brain age

The mean absolute error (MAE) between predicted and chronological

age in the HC group was 3.59 years, indicative of the very good per-

formance of the ensemble prediction model. We then calculated the

BrainAGE score as the per-subject difference between predicted and

chronological age and tested for its association with cognitive status,

SDB status, and the SDB-by-cognitive status interaction. Participants

with MCI and in particular AD showed an advanced brain age

(on average 4.0 (95% confidence interval or CI: 2.6–5.4) and 9.1

(95%CI: 5.8–12.4) years, respectively) (Figure 3), in line with previ-

ous studies. However, there was no significant effect on BrainAGE

scores associated with SDB status, nor was there a positive SDB-by-

cognitive status interaction, suggesting that SDB may not lead to

advanced brain aging (Figure 3c).

F IGURE 2 Association between volumetric data of cortical and subcortical parcels and age and cognitive status of subjects. Gray matter
volume differences in 600 cortical parcels and 73 subcortical volume was assessed using three steps of using F value of an n-way analysis of
variance as reference statistics, running 10,000 permutations per randomly shuffling different parcels, under the assumption of label
exchangeability, and correction of p values using family-wise error (FWE) method. Significant parcels are illustrated as the heated areas on the
brain maps considering (a) age and (b) cognitive status. Since there were no significant results regarding SDB presence or SDB-by-diagnosis
interaction, results according to these factors have not been illustrated here. SDB, sleep-disordered breathing
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4 | DISCUSSION

Our findings confirmed previously reported gray matter atrophy and

accelerated biological brain aging in patients with MCI and AD, corrobo-

rating the robustness and validity of our analytical approach. However,

importantly, we were not able to demonstrate any effect of SDB, inde-

pendently or in interaction with cognitive status, on either regional gray

matter volume or brain aging score. Of note sample sizes of subjects

with SDB in the HC and AD groups were small. To our knowledge, the

current sample represents the largest neuroimaging study in SDB, which

is actually a by-product of a large, openly shared dataset aimed primarily

at a different purpose, namely the investigation of AD and dementia.

This not only highlights the potential of shared data with broader pheno-

typical information, but also provides important future perspectives aris-

ing from the increased availability of such datasets. In this context, we

would like to particularly highlight the UK Biobank, which through its

extensive medical and social history taking will likely have a profound

impact on the investigation of the neurobiological effects of various

common medical conditions (Sudlow et al., 2015). Given the sheer size

of the dataset and the rather restricted age-range, there will be hundreds

of cases, as well as potentially thousands of control subjects for medical

conditions like SDB, easily outnumbering any individual, monocentric

study (Campos et al., 2020; H. Wang et al., 2019). Thus, a (ideally pre-

registered) replication of the current analysis in that large dataset seems

warranted in future. As another possible limitation here, the groups were

heterogeneous in terms of clinical characteristics and imaging specifica-

tions. We used propensity-score matching and stratified subsampling of

external datasets to minimize the effects of heterogeneity. As previously

mentioned on publications using the ADNI database (Bubu et al., 2019;

Osorio et al., 2015), the self-reported measure of SDB can be influenced

by both the recall bias of cognitively impaired subjects, as well as by a

high prevalence of undiagnosed OSA in the general population, therefore

increasing the probability of false-negative cases considering SDB diag-

nosis (Osorio et al., 2015). Moreover, assessment of SDB severity and

disease duration were not available in the ADNI data.

4.1 | Gray matter volume alterations in AD
and SDB

One of the main characteristics of MCI and AD is generalized gray

matter loss in the brain, which mostly starts in the medial temporal

F IGURE 3 Results of the BrainAGE prediction method based on the presence of sleep-disordered breathing and cognitive status.
(a) Relationship between chronological age and the predicted age from T1 images in Alzheimer's disease, mild cognitive impairment, and healthy
control groups. There is an evident higher predicted age for the participants with Alzheimer's disease and mild cognitive impairment compared to
the healthy control group, in accordance with advanced pathological brain aging in the Alzheimer's disease course. (b) The BrainAGE score shows
positive and bigger deviation from chronological age in Alzheimer's disease and mild cognitive impairment groups. (c) Despite the significantly
higher BrainAGE deviation associated with Alzheimer's disease and mild cognitive impairment, no significant deviation was seen between the
BrainAGE score of sleep-disordered breathing subgroups
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lobe and multimodal association areas (Fox & Schott, 2004; C. R. Jack

et al., 2004; Karas et al., 2004; Pasquini et al., 2019). Neuroimaging

meta-analyses in AD have demonstrated atrophy in the medial temporal

lobe, limbic regions (left parahippocampal gyrus, left posterior cingulate

gyrus, amygdala, and uncus), thalamus, temporal, parietal, frontal and cin-

gulate cortices (W.-Y. Wang et al., 2015; Yang et al., 2012). A similar, but

milder distribution of gray matter atrophy is evident in the brain of

patients with MCI (Nickl-Jockschat et al., 2012; Yang et al., 2012). In

accordance with the previous brain volumetric studies, we found diffuse

gray matter loss in MCI and AD. The atrophy was mainly located in the

bilateral temporal lobe and medial temporal areas with higher intensity in

AD compared to MCI.

Assessing the volumetric changes due to SDB, we did not observe

any significant alteration in gray matter volume, neither in HC sub-

jects, nor in patients with MCI or AD. Furthermore, self-reported SDB

interaction with cognitive status (HC, MCI, AD) revealed no associa-

tions with gray matter volume. Historically, there has been an inability

to replicate results among the brain imaging studies of SDB in non-

demented populations. While several studies have reported gray mat-

ter atrophy in the insula, amygdala, middle and lateral temporal

regions, and cerebellum in non-demented populations with SDB (Joo

et al., 2013, 2010; Morrell et al., 2010; Torelli et al., 2011; Weng

et al., 2014), others have either shown no associations (O'Donoghue

et al., 2005; Yun et al., 2017) or even enhancement in the gray matter

volume in the motor cortices, prefrontal cortex, thalamus, putamen,

and the hippocampus (Baril et al., 2017; Kumar et al., 2014; Lin et al.,

2016; Lundblad et al., 2014; Rosenzweig et al., 2013; Taylor et al.,

2018). In addition, there is a general lack of longitudinal studies, which

would enable the study of nonlinear associations between SDB and

cortical atrophy, suggested by the present cross-sectional findings.

Despite these important gaps in the literature, three neuroimaging

meta-analyses have demonstrated that OSA is associated with gray

matter atrophy in a few selected regions including the amygdala

and hippocampus (Tahmasian et al., 2016), as well as cingulate, right

central insula, right middle temporal gyrus, right premotor cortex, and

cerebellum (Shi et al., 2017; Weng et al., 2014).

The observed null association between SDB and gray matter vol-

ume should, however, be interpreted with caution. Firstly, it has been

suggested that aging may have partially protective mechanisms

against SDB, such as reduced production of oxidative stress after

apneas and decreased blood pressure and heart rate responses after

arousals (Baril et al., 2017). The average old age of ADNI subjects

(~75 years-old) could, therefore, explain this nonsignificant associa-

tion between SDB and brain morphometry. Despite numerous individ-

ual studies and meta-analyses focused on the changes in gray matter

in middle-aged patients with OSA, there are few studies on gray mat-

ter changes in older adults with SDB and, to our knowledge, neither

have found decreases in thickness or volume in cortical gray matter

(Sébastien Celle et al., 2009; Cross et al., 2018; Lutsey et al., 2016).

Secondly, it is possible that SDB impairs selective brain functions

(Canessa et al., 2018) or amyloid burden (Yun et al., 2017) before

gray matter volume. Furthermore, differential diagnosis between SDB-

related and age-related brain atrophy is difficult in single-point

observational studies, particularly in those cases in which groups are

matched by age and cognitive status. Thirdly, this could also be a sign

of a) survival bias, as most patients with SDB may have transitioned

to AD and only those with very low cortical atrophy or high in

cognitive reserve at disease onset would remain as HC or MCI at

cross-section; or b) selection bias due to matching by the APOE4

allele, as it has been reported that the APOE4 allele interacts

with brain aging scores measured by the BrainAGE method,

revealing potential neuronal compensation in healthy APOE4+ adults

(Scheller et al., 2018), which could also result in null findings. Fourthly,

we did not account for other comorbidities and possible confounders

alongside age or presence of the APOE4 allele in the prediction models

(Gozal, 2018). Finally, previous MRI studies mostly recruited patients

with polysomnography-diagnosed OSA from sleep clinics, which might

be a different population from those recruited in memory clinics with a

self-reported assessment of SDB based on their clinical interview.

Interestingly, we were not able to demonstrate any interaction

between SDB and MCI or AD with brain atrophy. This is indicative that

despite the frequent clinical co-occurrence of SDB and AD, there may

be no synergy between them in accelerating gray matter atrophy.

Recent investigations using cerebrospinal fluid and PET imaging suggest

an interplay between amyloid production/clearance and SDB (Bubu

et al., 2019; Liguori et al., 2017; Sharma et al., 2018; Spira et al., 2013;

Yun et al., 2017). These include an impairment in the cerebrospinal

fluid–interstitial fluid exchange (Ju et al., 2016), cerebral edema second-

ary to an intermittent hypoxia (Spira et al., 2018) (similar to the increase

in brain volume and pseudoatrophy observed in multiple sclerosis), and

compensatory excessive neuronal synaptic activity (Polsek et al., 2018)

in SDB, all of which could potentially lead to an increase in beta-amyloid

deposition and its clearance reduction. It is, therefore, possible that the

presence of SDB is associated with AD risk only through beta-amyloid

deposition (Bubu et al., 2019; Sharma et al., 2018) or altered brain func-

tion (Chen et al., 2018; Park et al., 2016; Thomas, Rosen, Stern, Weiss, &

Kwong, 2005), as mentioned before. While amyloid burden has been

linked to SDB in several observational studies (Bubu et al., 2019; GBD

2016 Disease and Injury Incidence and Prevalence Collaborators et al.,

2017; Sharma et al., 2018), a recent study on non-demented elderly

subjects, has found no association between self-reported sleep distur-

bances and brain amyloid PET burden (Gabelle et al., 2019). In addition,

in our results, we expected an interaction with MCI or AD where it is

generally accepted that neuronal loss follows amyloid deposition. More

studies are needed to better understand the compensatory increase in

gray matter volume in SDB suggested by several studies, as well as the

precise progression of brain atrophy in AD, as both may have contrib-

uted to obtaining such negative findings.

4.2 | BrainAGE prediction in AD and SDB

Brain age prediction methods have been previously used in cogni-

tively normal subjects (Aycheh et al., 2018; Franke et al., 2012).

In addition, several studies have used the ADNI dataset and other

datasets of middle-aged adult and elderly population with MAE
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ranging from 3.8 to 6 years (Cole et al., 2019; Varikuti et al., 2018).

Conversely, in our study, an advanced sensitive BrainAGE estimation

method has been implemented to detect pathologic brain aging.

A repeated support vector machine (SVM) models were fitted on

parcel-wise gray matter volume data of on stratified subsamples

from external cohorts, making the model notably less sensitive to

heterogeneity in images (Varikuti et al., 2018). In addition, compared

to previous studies on the middle-aged adults and elderly subjects

(Cole et al., 2019), while using multiple datasets for training prediction

model, our age prediction results were accurate with an MAE of

3.6 years in older adults and elderly subjects. Replication of previous

findings in patients with AD, taken together with acceptable MAE,

is indicative of the reliability of our proposed method in gray matter

volume assessment and age estimation.

While there is no exact definition for accelerated brain aging, the

BrainAGE score has been shown to be a sensitive predictor of disease

progression in dementia (Cole et al., 2019; Gaser et al., 2013; Löwe et al.,

2016). Previous findings on increased BrainAGE score in MCI and AD

course (Beheshti, Maikusa, & Matsuda, 2018; Caballero, Klöppel,

Dichgans, & Ewers, 2016; Liem et al., 2017), are in agreement with the

reported accelerated aging of the demented brain shown in-vivo and ex-

vivo studies (Mecocci et al., 2018). The BrainAGE score in studies using

ADNI ranged from almost zero for patients with stable MCI, to 5.7–-

6.2 years for patients with progressive MCI, and reached up to 10 years

for patients with AD (Cole et al., 2019). We found the average 4.1 and

9 BrainAGE scores in patients with AD and MCI, in agreement with previ-

ous findings using ADNI data. Since we did not distinguish patients with

progressive from stable MCI, our results in the MCI group were modest

compared to other studies including patients with late or progressive MCI.

5 | CONCLUSIONS

The association between sleep, gray matter volume and cognitive

functions has been demonstrated previously (Tahmasian et al., 2019;

Takeuchi et al., 2018). Here, we have demonstrated the acceleration

of brain atrophy and advanced brain aging in MCI and AD participants

from the ADNI cohort compared to HCs. We further found that self-

reported SDB in subjects with a diagnosis of HC, MCI or AD was neither

associated with gray matter volume reduction, nor with accelerated brain

aging. While SDB is suggested to propagate the aging process, amyloid

burden and cognitive decline to AD, it may not necessarily associate with

brain atrophy and the estimated brain age in AD progression. Reproduc-

ibility of neuroimaging findings is one of the major issues in science.

While every effort has been done to increase the robustness and validity

of our findings, future analyses will inevitably benefit from inclusion of

well characterized and objectively diagnosed SDB phenotypes, ideally

collected from studies that were specifically designed to investigate AD-

SDB interaction.
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